

Volume 12, Issue 4, July-August 2025

Impact Factor: 8.152

| ISSN: 2394-2975 | www.ijarety.in| | Impact Facto0072: 8.152 | A Bi-Monthly, Double-Blind Peer Reviewed & Refereed Journal |

|| Volume 12, Issue 4, July - August 2025 ||

DOI:10.15680/IJARETY.2025.1204039

To Understand Various types of Disasters and their Management in India

Mr. Shreyash S. Kolhe¹, Prof. Pranav Lende ²

M.Tech Student, Dept. of Civil Engineering, G. H. Raisoni University, Amaravati, India¹ Assistant Professor, Dept. of Civil Engineering, G. H. Raisoni University, Amaravati, India²

ABSTRACT: This project presents a systematic study of various types of disasters—natural and anthropogenic—and analyzes their causes, effects, and engineering implications. The objective is to develop a comprehensive understanding of disaster typologies, including geological (earthquakes, landslides), hydrometeorological (floods, cyclones), biological (pandemics), and technological (industrial accidents, infrastructure failures) events. The research focuses on the engineering challenges posed by these disasters and evaluates current mitigation, preparedness, and response strategies. Emphasis is placed on risk assessment methodologies, resilient infrastructure design, and the integration of disaster risk reduction (DRR) into engineering practices. The findings aim to support the development of more robust and adaptive systems that enhance societal resilience against future disasters.

Disasters, both natural and man-made, pose significant threats to human life, infrastructure, and the environment. With the increasing frequency and intensity of such events due to climate change, urbanization, and technological advancements, effective disaster management has become a critical area of study and application. This project aims to provide a comprehensive understanding of various types of disasters—including natural (earthquakes, floods, cyclones, wildfires), technological (industrial accidents, nuclear incidents), and biological (pandemics)—and analyze the strategies used for their mitigation, preparedness, response, and recovery. The study integrates engineering principles with disaster risk management frameworks to evaluate early warning systems, resilient infrastructure design, emergency response mechanisms, and post-disaster rehabilitation processes. Case studies and simulation models are used to assess real-world applications and the effectiveness of current practices. The findings are intended to support the development of more robust disaster management systems and contribute to the engineering solutions that enhance societal resilience against future disasters.

KEYWORDS: Disaster Management, Natural Disasters, Man-Made Disasters, Disaster Risk Reduction (DRR), Engineering Resilience, Risk Assessment, Infrastructure Design, Emergency Preparedness, Mitigation Strategies, Response and Recovery, Climate Change, Urbanization, Early Warning Systems, Technological Disasters, Biological Hazards.

I. INTRODUCTION

India is highly vulnerable to a variety of natural and man-made disasters due to its diverse geography, climatic conditions, and rapid urbanization. These disasters—such as earthquakes, floods, cyclones, droughts, and industrial accidents—cause significant loss of life and property, and pose serious challenges to the nation's development and safety.

To address these risks, India has established a comprehensive disaster management system based on the Disaster Management Act, 2005. Key institutions like the National Disaster Management Authority (NDMA), State Disaster Management Authorities (SDMAs), and the National Disaster Response Force (NDRF) coordinate efforts across all levels of government.

While past disasters such as the 2001 Bhuj earthquake and the 2020 COVID-19 pandemic have led to improvements in disaster preparedness and response, challenges remain due to inadequate infrastructure, poor coordination, and low public awareness. The focus is now shifting toward proactive risk reduction, community involvement, and resilience building.

This project aims to analyze the types and causes of disasters in India, evaluate the effectiveness of current disaster management strategies, and suggest improvements for a safer and more resilient future.

| ISSN: 2394-2975 | www.ijarety.in| | Impact Facto0072: 8.152 | A Bi-Monthly, Double-Blind Peer Reviewed & Refereed Journal |

|| Volume 12, Issue 4, July - August 2025 ||

DOI:10.15680/IJARETY.2025.1204039

II. VARIOUS DISASTERS AND THEIR MANAGEMENT IN INDIA

> Summary of Major Disasters and Management Efforts

Disaster Type	Preparedness & Systems	Challenges	Management Measures
Earthquakes	Building codes (IS 1893, IS 4326); NDRF response	Poor code enforcement; lack of drills	Urban search & rescue training; structural retrofitting
Floods	IMD & CWC forecasting; satellite imagery	Urban flooding, poor drainage	Early warning systems, resilient infrastructure
Cyclones	Accurate IMD forecasts; cyclone shelters	Coastal vulnerability	Successful evacuations (e.g., Fani 2019); Odisha model
Droughts	NADAMS monitoring; drought- resilient crops	Poor irrigation & water management	MGNREGA employment; monsoon monitoring
Landslides	Hazard maps by GSI; early warnings	Deforestation, hill construction	NDMA risk plans; slope stabilization
Industrial/Chemical	Post-Bhopal safety laws (EPA 1986)	Outdated tech, lax compliance	Regular mock drills, CPCB monitoring
Biological (e.g., COVID-19)	Improved healthcare & surveillance	Weak rural health infra	Vaccination, quarantine, emergency protocols
Heatwaves/Cold Waves	Heat Action Plans (Ahmedabad, Nagpur)	High mortality, low awareness	Cooling shelters, advisories, NDMA guidelines
Avalanches	SASE alerts; army training	Difficult terrain, tourism pressure	Beacons, drones, specialized rescue teams
Fires (Urban/Forest)	Fire audits; FSI alerts via satellites	Safety compliance gaps	Integrated helplines, local fire response teams

> Cross-Cutting Systems & Infrastructure

- NDMA: Central coordinating body for all disaster planning.
- NDRF: Specialized force for multi-disaster response.
- Technology Use: GIS, drones, mobile apps (e.g., Sachet, Damini), satellite data for real-time alerts.
- Community Participation: School safety drills, disaster education, local committees.

> Technological & Programmatic Advancements

- Real-Time Monitoring: ISRO satellites track floods, landslides, fires.
- Mobile Tools: Disaster apps for public alerts.
- Smart Cities: DRR integrated into planning and infrastructure.

➤ Key National Initiatives

- Sendai Framework Alignment: Strengthening resilience and awareness.
- NCRMP: Cyclone shelters and early warning systems in coastal areas.
- SDRF: Central aid for state-level disaster response.

Community & Education Programs

- School Safety Program: Curriculum and drills.
- Awareness Campaigns: Seasonal media outreach.
- Mock Drills: Regular simulation exercises for coordination.

| ISSN: 2394-2975 | www.ijarety.in| | Impact Facto0072: 8.152 | A Bi-Monthly, Double-Blind Peer Reviewed & Refereed Journal

|| Volume 12, Issue 4, July - August 2025 ||

DOI:10.15680/IJARETY.2025.1204039

➤ India's Global Role

- SAARC Disaster Management Centre: Regional collaboration.
- Humanitarian Aid: Rescue missions in Nepal, Turkey, etc.
- Climate Resilience: Leading initiatives like CDRI.

> Persistent Challenges

- Weak enforcement of codes and land-use norms
- Shortage of trained personnel in semi-urban and rural areas
- Coordination issues across governance levels
- · Limited readiness for slow-onset disasters like droughts and epidemics

III. MITIGATION TECHNIQUES IN DISASTER MANAGEMENT IN INDIA

Structural Mitigation Techniques

These involve physical infrastructure or engineering measures to withstand or deflect disaster impacts.

Disaster Type	Structural Measures
Earthquakes	Earthquake-resistant construction (IS 1893, IS 4326), retrofitting of old buildings (esp. schools, hospitals)
Floods	Embankments, dams (e.g., Hirakud), improved urban drainage, rainwater harvesting
Cyclones	Cyclone shelters, wind-resistant houses, coastal embankments, mangrove plantations

> Non-Structural Mitigation Techniques

These include policies, awareness, planning, and financial tools to prevent or reduce disaster risk.

Technique	Key Strategies	
Land-Use Planning	Zoning laws, restriction of construction in high-risk zones (coastal, floodplain, seismic areas)	
Early Warning Systems	Cyclone alerts (IMD), flood forecasts (CWC/ISRO), landslide monitoring (GSI), heatwave advisories	
Awareness & Education	School drills, community training, media outreach, mobile alert apps	
Insurance & Financial Protection	Crop insurance (PMFBY), property insurance in vulnerable zones	
Environmental Management	Wetland and forest conservation, sustainable water and agriculture practices	
Policy & Governance	National Disaster Mitigation Fund (NDMF), State/District plans, integration of DRR into development planning	

Objectives of Studying Mitigation Techniques

- Understand how various disasters impact communities.
- Learn both structural and non-structural mitigation strategies.
- Explore how science, policy, and community actions reduce risks.
- Analyze success stories (e.g., cyclone shelters in Odisha).
- Encourage "build back better" practices post-disaster.

| ISSN: 2394-2975 | www.ijarety.in| | Impact Facto0072: 8.152| A Bi-Monthly, Double-Blind Peer Reviewed & Refereed Journal |

|| Volume 12, Issue 4, July - August 2025 ||

DOI:10.15680/IJARETY.2025.1204039

Categorization of Mitigation Techniques

Type	Examples	
Structural	Earthquake-resistant buildings, flood barriers, cyclone shelters, landslide retaining walls	
Non-Structural	Son-Structural Land-use regulation, early warnings, insurance, disaster education	

➤ Importance of Mitigation in the Indian Context India is highly disaster-prone due to its:

- Coastal vulnerability (cyclones) → needs cyclone shelters and mangroves
- Mountainous regions (landslides, avalanches) → need slope control, monitoring
- Urban flooding risks → require proper drainage and zoning
- Multi-hazard exposure → demands tailored, localized mitigation strategies

IV. DISASTER CASE STUDY IN TERMS OF PROCESSES, RESPONSES, AND RECOVERY

Uttarakhand Flash Floods (2013) – Summary

Type: Flash Floods & Landslides

Date & Location: June 14-17, 2013, Kedarnath Valley, Uttarakhand

Impact:

- 5,700+ dead/missing
- Thousands stranded, massive infrastructure loss (₹4,000–₹5,000 crore)

Main Causes:

- Intense rainfall (370+ mm)
- Glacial lake breach (Chorabari Glacier)
- Deforestation, unregulated hydroelectric projects
- Haphazard construction in ecologically sensitive zones

Disaster Management:

- Preparedness: Ineffective early warnings, weak infrastructure
- Response: Massive rescue effort by Army, Air Force, NDRF (1.1 lakh people evacuated)
- · Recovery: Kedarnath rebuilt, trauma support provided, infrastructure rehabilitation initiated

Lessons Learned:

- Improve early warning systems
- Enforce environmental regulations
- Avoid unplanned development in hazard-prone zones
- Integrate DRR into pilgrimage planning

➤ Wayanad Landslides (2024) – Summary

Type: Rain-induced landslides and flash floods

Date & Location: July 30, 2024 - Wayanad District, Kerala

Impact:

- Human Loss: Over 420 killed, 397 injured, 118 missing
- Property Loss: 1,555+ structures damaged, ₹1,200 crore+ loss
- Environmental Loss: Forest loss, 8 elephants, 2 tigers, and other wildlife killed
- Displacement: 10,000 people displaced

Causes

- Heavy rainfall (572 mm in 48 hrs)
- Deforestation, seismic activity
- Construction on unstable slopes

| ISSN: 2394-2975 | www.ijarety.in| | Impact Facto0072: 8.152| A Bi-Monthly, Double-Blind Peer Reviewed & Refereed Journal |

|| Volume 12, Issue 4, July - August 2025 ||

DOI:10.15680/IJARETY.2025.1204039

- Climate change-induced extreme weather
- Rapid, unregulated tourism and population growth

Response & Recovery:

- 1,500+ rescue personnel deployed (Army, NDRF, SDRF, IAF, Navy, etc.)
- 10,000+ relocated to relief camps
- Use of radar, drones, dog squads, DNA tech for identification
- Temporary bridges built; forensic DNA sequencing used for ID

Rehabilitation:

- ₹6 lakh to families of the deceased
- Houses pledged/built by NGOs, corporates, state & central governments
- Free education, rations, healthcare, and employment support provided

Rescue Highlights:

- India's most advanced disaster search efforts (Buried Object Detection Systems, K-9 teams, UAVs)
- 4-week-long multi-agency operations
- PM & senior leaders visited affected zones
- Emotional trauma support, community involvement, and massive donation drives

Key Takeaways:

- Critical need for land-use planning in Western Ghats
- Strengthen early warnings and restrict hazardous construction
- Integrate climate resilience into state policies
- Public-private partnerships crucial for long-term recovery

Comparative Insights:

Factor	Uttarakhand 2013	Wayanad 2024
Disaster Type	Flash Floods & Landslides	Rain-induced Landslides & Flash Floods
Death Toll	~5,700+	420+
Key Trigger	Cloudburst + Glacial Breach	Intense Rain + Deforestation
Rescue Efforts	Army, Air Force, NDRF	Army, Air Force, Navy, IAF, NDRF
Long-Term Recovery	Infrastructure rebuilding, planning	Township resettlement, trauma rehab
Technology Used	Limited	Drones, DNA sequencing, radars
Lessons	Focus on preparedness, sustainable development	Climate action, early warnings, land zoning

V. FRAMEWORK FOR DISASTER MANAGEMENT IN CIVIL ENGINEERING

> Prevention & Mitigation

Goal: Reduce disaster risk before it occurs.

- Risk Assessment: Identify hazard-prone zones (earthquakes, floods, landslides).
- Land Use Planning: Restrict construction in vulnerable areas.
- Structural Safety: Use earthquake-resistant designs, build drainage and retaining walls.
- Building Codes: Enforce strict construction regulations.
- Retrofitting: Upgrade old structures to meet safety standards.

> Preparedness

Goal: Ensure readiness for disaster events.

- Disaster Plans: Develop tailored action plans for various scenarios.
- Training & Awareness: Train engineers and educate the public on safety protocols.
- Resource Management: Stockpile emergency tools and supplies.

| ISSN: 2394-2975 | www.ijarety.in| | Impact Facto0072: 8.152 | A Bi-Monthly, Double-Blind Peer Reviewed & Refereed Journal

|| Volume 12, Issue 4, July - August 2025 ||

DOI:10.15680/IJARETY.2025.1204039

• Early Warning Systems: Integrate alerts with real-time monitoring systems.

> Response

Goal: Immediate reaction post-disaster to save lives and ensure safety.

- Emergency Coordination: Enable rescue access, temporary shelters, and logistics.
- Damage Inspection: Rapid structural assessments to identify unsafe zones.
- Utility Restoration: Restore water, power, and drainage quickly.
- Public Safety: Isolate dangerous areas and communicate clearly with the public.

> Recovery

Goal: Rebuild and restore better than before.

- Reconstruction: Rebuild using improved disaster-resilient designs.
- Rehabilitation: Repair homes, roads, bridges, and other infrastructure.
- Post-Assessment: Analyze failures to improve future resilience.
- Funding & Policy: Secure support for long-term recovery via partnerships with government and NGOs.

➤ Roles of a Civil Engineer in Disaster Management

Civil engineers play multifaceted roles in all phases of disaster management—from risk identification to rebuilding.

1. Risk Evaluator

- Identifies hazards and assesses structural vulnerability.
- Conducts site investigations and hazard mapping.
- Recommends preventive measures to minimize disaster impact.

2. Planner and Designer

- Designs disaster-resistant infrastructure (e.g., seismic, flood-safe).
- Plans drainage, flood barriers, and slope protection.
- Follows national codes and includes climate adaptation strategies.

3. Site Manager (Post-Disaster)

- Supervises rebuilding, debris removal, and safety enforcement.
- Manages workforce, materials, and machines efficiently.
- Ensures compliance with safety and quality standards.

4. Policy Advisor

- Guides government on resilient infrastructure policies.
- Contributes to post-disaster reviews and strategic planning.
- Advocates for innovative, sustainable building practices.

> Additional Functions in Recovery

Role	Key Tasks	
Damage Assessor	Inspect, document, and prioritize infrastructure damage.	
Reconstruction Planner	Develop plans, coordinate with stakeholders, and allocate resources.	
Safety Officer	Oversee safe operations and demolition.	
Material Manager	Ensure timely procurement of quality materials.	
Quality Controller	Monitor engineering standards during reconstruction.	
Coordinator	Liaise with authorities, NGOs, and communities.	
Resilience Integrator	Incorporate improved disaster-resistant techniques in all new construction.	

| ISSN: 2394-2975 | www.ijarety.in| | Impact Facto0072: 8.152| A Bi-Monthly, Double-Blind Peer Reviewed & Refereed Journal |

|| Volume 12, Issue 4, July - August 2025 ||

DOI:10.15680/IJARETY.2025.1204039

VI. CONCLUSION

- 1. Core Functions of Civil Engineers in Disaster Management
- Risk Evaluators: Identify hazards and assess structural vulnerabilities.
- Designers: Plan and construct disaster-resilient infrastructure (e.g., earthquake-resistant buildings, flood-safe drainage).
- Site Managers: Oversee safe demolition and reconstruction during recovery phases.
- Policy Advisors: Contribute to sustainable urban planning and disaster risk reduction strategies.

2. Engineering Solutions Tailored to Disaster Types

Each disaster demands specific civil engineering interventions:

- Earthquakes: Seismic zoning, ductile detailing, base isolation systems.
- Floods: Elevated construction, stormwater management, floodplain zoning.
- Cyclones: Wind-resistant structures, lightweight yet durable materials.
- Landslides: Slope stabilization, retaining walls, drainage control.
- Droughts: Rainwater harvesting, check dams, water storage systems.

3. Challenges in Implementation

Despite technological and regulatory advances, implementation gaps persist:

- Poor enforcement of building codes (e.g., IS Codes).
- Lack of awareness and skilled manpower in rural areas.
- Unplanned urbanization, increasing risk exposure.
- Insufficient funding for retrofitting older structures.

4. Progress and Institutional Framework

India has taken strong steps toward improved disaster management:

- Establishment of NDMA and SDMAs for structured response mechanisms.
- Use of technologies like GIS, satellite monitoring, and early warning systems.
- Promotion of resilient construction via national programs such as PMAY, Smart Cities, and AMRUT.
- Reconstruction efforts now integrate sustainability and resilience as core principles.

5. Expanding Role of Civil Engineers

Modern civil engineers are engaged not just in construction, but also in:

- Urban planning and policy advising.
- Collaborating in interdisciplinary disaster risk reduction teams.
- Innovating with green buildings, climate-adaptive designs, and community-based recovery models.

REFRENCES

Journal Articles

- 1. Gupta, L. K., Singh, V. K., & Sharma, M. (2014). Disaster management: Construction and designing of earthquakeresistant buildings in Aligarh city (A case study). International Journal of Advanced Earth Science and Engineering, 3 (1), 254–261.
- 2. Khan, S. A., & Choudhury, M. A. (2017). Role of civil engineers in disaster management and sustainable development. International Journal of Civil Engineering and Technology, 8 (3), 222–230.
- 3. Mehta, P., & Sood, R. K. (2016). Application of GIS in flood management: A case study of the 2013 Uttarakhand floods. Journal of Earth Science and Engineering, 5 (2), 123–135.

Books

- 4. Kumar, S. (2018). Disaster management in India: Issues, perspectives, and concerns. GK Publications. ISBN: 9789387722694
- 5. Singh, S. (2019). Disaster management: Textbook for Civil Services Examination. Unique Publishers. ISBN: 9789390105326
- 6. Sharma, P., & Sood, V. (2020). Disaster management: A civil engineering perspective. Wiley India Pvt. Ltd. ISBN: 9788126559317

| ISSN: 2394-2975 | www.ijarety.in| | Impact Facto0072: 8.152| A Bi-Monthly, Double-Blind Peer Reviewed & Refereed Journal |

|| Volume 12, Issue 4, July - August 2025 ||

DOI:10.15680/IJARETY.2025.1204039

Conference Papers and Proceedings

- 7. Verma, A. K., Singh, T. N., Mohamad, E. T., Mishra, A. K., Gamage, R. P., Bhatawdekar, R., & Wilkinson, S. (Eds.). (2025). Proceedings of the 2nd International Conference on Geotechnical Issues in Energy, Infrastructure and Disaster Management (ICGEID 2024). Springer Singapore. https://doi.org/10.1007/978-981-97-1757-6
- 8. Rao, P. J., Rao, K. N., & Kubo, S. (Eds.). (2019). Proceedings of International Conference on Remote Sensing for Disaster Management: Issues and Challenges in Disaster Management. Springer Cham. https://doi.org/10.1007/978-3-319-77276-9
- 9. Reddy, R. P. (2013). Proceedings of the National Workshop on Disaster Management in India. Journal of the Geological Society of India, 81(1), 146–147. https://doi.org/10.1007/s12594-013-0016-8

Reports and Guidelines

- 10. National Disaster Management Authority (NDMA). (2016). National disaster management guidelines: Management of earthquakes. Government of India. https://ndma.gov.in/sites/default/files/PDF/Disaster%20Management%20Guidelines/Management%20of%20Earthquakes.pdf
- 11. Bureau of Indian Standards (BIS). (2016). National Building Code of India (NBC) 2016. https://bis.gov.in/index.php/product-manuals/?page id=133
- 12. Patel, R., & Bhatt, N. (2018). Disaster risk reduction strategies in civil engineering: A case study of post-disaster recovery in Gujarat. National Institute of Disaster Management (NIDM).

ISSN: 2394-2975 Impact Factor: 8.152